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1.1 Introduction

Recovering intrinsic low-rank structure of data from corrupted observations is widely used
in many machine learning, data mining, and computer vision tasks. In general, low-rank
recovery methods can be grouped into two categories; convex nuclear-norm based formula-
tions and non-convex matrix factorization approaches. Convex nuclear-norm based methods
are guaranteed to attain global minimum with cubic computational complexity. While non-
convex matrix factorization methods suffer from possible convergence to local minima, they
are computationally more efficient with quadratic complexity. Motivated by seizing the fa-
vorable aspects of these methods, this chapter presents a computationally efficient low-rank
recovery method called Robust Orthonormal Subspace Learning (ROSL) that utilizes a
novel rank measure on the data matrix to impose group sparsity structure on its coeffi-
cients under an orthonormal subspace. This rank measure is proven to be lower bounded by
the the same global minimum as the nuclear norm and is demonstrated experimentally to
converge to its global minimum with high probability. This chapter also describes a fast ver-
sion (ROSL+) empowered by random sampling, which further decreases the computational
complexity from quadratic to linear.

Convex nuclear norm based methods, such as Robust PCA (RPCA, also called
PCP [CLMW11]) and Sparse Low-Rank Matrix Decomposition (SLRMD) [YY09], em-
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ploy the nuclear norm as a surrogate for the highly non-convex rank minimization prob-
lem [RFP07]. RPCA has been shown to be a convex problem with performance guaran-
tee [CLMW11]. It assumes the observation matrix X ∈ Rm×n is generated by the addition
of a low-rank matrix A (rank: r � min{m,n}) and a sparse matrix E. Suppose Singular
Value Decomposition (SVD) of A is denoted as A = USV T , where S is a diagonal matrix
with singular values Si, 1 ≤ i ≤ min{m,n}) on the diagonal, RPCA recovers the low-rank
matrix A from the corrupted observation X as follows:

min
A,E
‖A‖∗ + λ‖E‖1 s.t. A+ E = X (1.1)

where nuclear norm ‖A‖∗ =
∑n
i=1 Si.

Despite its superior results, RPCA is computationally expensive withO(min(m2n,mn2))
complexity due to multiple iterations of SVD for large-scale problems. Reducing the number
of iterations is a possible remedy [TSSK10], yet the computational load is dominated by
SVD itself. Instead of full SVD, partial RPCA [LCM10] computes κ (r < κ) major singular
values, thus it has O(κmn) complexity. Nevertheless, partial RPCA requires a proper way to
preset the optimal value of κ. GoDec [ZT11] uses bilateral random projection to accelerate
the low-rank approximation in RPCA. Similarly, RP-RPCA [MDYY11] applies random
projection P on A (i.e., A′ = PA) and then minimizes the rank of A′. However, rank
minimization using randomized SVD is unstable and might be even slower than RPCA
since it remands conducting SVD on many different projected matrices A′ at each iteration.

As an alternative, non-convex matrix factorization approaches including RMF [KK05]
and LMaFit [SWZ11] have been proposed for fast low-rank recovery. Instead of minimizing
the rank of A, these approaches represent A under some predetermined rank subspaces
(spanned by D ∈ Rm×k) as A = Dα, where coefficients α ∈ Rk×n and r < k � min(m,n).
Due to its SVD-free property, these non-convex matrix factorization techniques are compu-
tationally preferable to RPCA. Still, their quadratic complexity O(kmn) is prohibitive for
large-scale low-rank recovery. Besides, they need an accurate initial rank estimate that is
not easy to obtain itself.

Inspired by the group sparsity structure in sparse coding [TVW05, YL06, MBP+09,
BPSS09, HZM09], ROSL solves the rank minimization problem of a matrix A by imposing
a group sparsity constraint on its coefficients α under an orthonormal subspace spanned by
orthonormal bases D. The intuition is that, given the subspace representation A = Dα, the
rank of A is upper bounded by the number of non-zero rows of α. ROSL can be regarded as
a non-convex relaxation of RPCA by replacing the nuclear norm with this rank heuristic.
Firstly, this relaxation enables the employment of efficient sparse coding algorithms in low-
rank recovery, therefore ROSL has only O(rmn) (r < κ, k) complexity, much faster than
RPCA. In addition, by imposing this rank heuristic, ROSL is able to seek the most compact
orthonormal subspace that represents the low-rank matrix A without requiring accurate
rank estimate (unlike RMF and LMaFit). Furthermore, this rank heuristic is proven to be
lower bounded by the nuclear norm, which means that ROSL has the same global minimum
as RPCA.

An efficient ROSL solver is also presented in this chapter. This solver incorporates a block
coordinate descent (BCD) algorithm into an inexact alternating decision method (ADM).
Despite its non-convexity, this solver is shown to exhibit strong convergence behavior, given
random initialization. Experimental results validate that the solution obtained by this solver
is identical or very close to the global minimum of RPCA.

As another contribution, a random sampling algorithm is introduced to further speed
up ROSL such that ROSL+ has linear complexity O(r2(m + n)). Similar sampling based
frameworks for RPCA can be found in DFC [MTJ11] and L1 filtering [LLSG14]. Although
these methods follow the same idea, i.e. Nyström method [WS00, KMT09, TR10], ROSL+
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addresses a different problem of accelerating orthogonal subspace learning. In addition,
ROSL+ elucidates a key point in Nyström method, how to estimate multiple submatrices,
which is omitted by DFC.

This chapter is organized as follows. Section 1.2 presents the proposed method (ROSL).
Section 1.3 develops its efficient solver. Section 1.4 provides its accelerated version (ROSL+).
Section 1.5 presents experimental results. Section 1.7 adds the acknowledgement and Sec-
tion 1.6 gives the concluding remarks.

1.2 Robust Orthonormal Subspace Learning

Similar to RPCA, ROSL assumes that the observation X ∈ Rm×n is generated by the
addition of a low-rank matrix A (rank: r � min{m,n}) and a sparse outlier matrix E
as shown in Figure 1.1. Different from RPCA that uses the principal subspace, ROSL
represents the low-rank matrix A under an ordinary orthonormal subspace (spanned by
D = [D1, D2..., Dk] ∈ Rm×k), denoted as A = Dα, where coefficients α = [α1;α2; ...;αk] ∈
Rk×N and αi specifies the contribution of Di to each column of A. The dimension k of the
subspace is set as k = β1r(β1 > 1 is a constant).

FIGURE 1.1 Illustration of the observation model X = A+ E = Dα+ E in ROSL.

1.2.1 Group Sparsity under Orthonormal Subspace

ROSL rank minimization formulation replaces the nuclear norm used in RPCA. Although
the Frobenius-norm regularization is a valid substitute for nuclear norm, as shown in
Lemma 1.1, it fails to recover the low-rank matrix without rank estimate.

THEOREM 1.1 ‖A‖∗ = minD,α
1
2 (‖D‖2F + ‖α‖2F ) s.t. A = Dα [FHB01, SRJ05].

Motivated by the group sparsity [TVW05, YL06, MBP+09, BPSS09, HZM09], ROSL
represents A under some vector subspace D and constraints the rank of A by imposing
the group sparsity of its coefficients α. Its main idea is that, given A = Dα, the rank of
A, or exactly α, is upper bounded by the number of non-zero rows of α, i.e. ‖α‖row-0. In
order to avoid the vanishing of coefficients α, the subspace bases are constrained to be on
the unit sphere, i.e., DT

i Di = 1,∀i. To further enable the group sparsity of α is a valid
measure of rank (A), we should eliminate the correlation of columns of D by constraining
it to be orthonormal, i.e., DTD = Ik, where Ik is an identity matrix. Thus, ROSL recovers
the low-rank matrix A from X by minimizing the number of non-zero rows of α, and the
sparsity of E as follows:

min
E,D,α

‖α‖row-0 + λ‖E‖0 s.t.Dα+ E = X,DTD = Ik,∀i (1.2)

THEOREM 1.2 ‖A‖∗ = ‖α‖row-1, when A = Dα,DTD = Ik and α consists of orthogo-
nal rows.
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It is well known that sparsity-inducing `1-norm is an acceptable substitute for the spar-
sity measure (i.e., `0-norm). Similarly, the row-1 norm, which is defined as ‖α‖row-1 =∑k
i=1 ‖αi‖2, is a good heuristic for the row sparsity (i.e., row-0 norm). Actually, it is easy

to reach the conclusion that the nuclear norm ‖A‖∗ is equal to the group sparsity ‖α‖row-1

under orthonormal subspace D, where A = Dα, if rows of α are orthogonal, as stated
in Lemma 1.2. In this case, the subspace bases D = U and coefficients α = SV T , where
A = USV T by SVD. For the computational efficiency, ROSL removes this orthogonal con-
straint on α and recover the low-rank matrix A from X by minimizing the row-1 norm of
α, and the `1-norm of E.

min
E,D,α

‖α‖row-1 + λ‖E‖1 s.t.Dα+ E = X,DTD = Ik,∀i (1.3)

1.2.2 Bound of Group Sparsity under Orthonormal Subspace

To show ROSL is a valid non-convex relaxation of the performance-guaranteed RPCA, we
investigate the relationship between the group-sparsity-based rank formulation with matrix
rank/nuclear norm.

PROPOSITION 1.1 Consider a thin matrix A ∈ Rm×n (m ≥ n), its SVD and orthonor-
mal subspace decomposition are respectively denoted as A = USV T and A = Dα, where
D ∈ Rm×n, α ∈ Rn×n and DTD = In without loss of generality. The minima of row-0
group sparsity and row-1 group sparsity of A under orthonormal subspace are respectively
rank(A) and nuclear norm ‖A‖∗:

(P1.1) min
Dα=A,DTD=In

‖α‖row-0 = rank(A) (1.4)

(P1.2) min
Dα=A,DTD=In

‖α‖row-1 = ‖A‖∗ (1.5)

Proof of (P1.1) It is straightforward that the rank of A, where A = Dα, should not
be larger than the dimension of α, resulting in that ‖α‖row-0 ≥ rank(α) ≥ rank(A). Thus,
the row-0 norm of α under orthonormal subspace D is lower bounded by the rank of A.

Proof of (P1.2) This part can be restated as: ‖α‖row-1 =
∑n
i=1 ‖αi‖2, will reach

its minimum ‖A‖∗, when the orthonormal bases are equal to the principal components,
i.e., D = U , where A = USV T by SVD. For simplicity of proof, we ignore other trivial
solutions—the variations (column-wise permutation or ± column vectors) of U . Since both
D and U are orthonormal bases, we reach the relationship, D = UΩ and α = ΩTSV T ,
where Ω is a rotation matrix (ΩTΩ = In,det(Ω) = 1). Here, we introduce a decreasing
sequence of non-negative numbers σi, 1 ≤ i ≤ n such that Si = σi, 1 ≤ i ≤ n. To validate
(P1.2), we need prove that the following relation holds for any Ω (the equality holds when
Ω is the identity matrix).

‖α‖row-1 = ‖ΩTSV T ‖row-1 ≥
n∑
i=1

Si = ‖A‖∗ (1.6)

1. We begin with the special case that all the singular values are identical. Specif-
ically, we decrease the singular values such that ∀i ∈ {1, ..., n}, Si = σn, where
σn is the last number in the decreasing sequence σi, 1 ≤ i ≤ n. Since each row of
the rotation matrix Ω is a unit vector, we reach the following relationship:
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‖α‖row-1 =

n∑
j=1

√√√√ n∑
i=1

Ω2
ijS

2
i = nσn =

n∑
i=1

Si = ‖A‖∗ (1.7)

2. Then, we try to prove that ‖α‖row-1 ≥ ‖A‖∗ still holds in the general case, i.e.,
Si = σi, 1 ≤ i ≤ n. We can transform the special case above into the general case
by n − 1 steps, among which the t-th step is increasing the top n − t singular
values (Si, 1 ≤ i ≤ n− t) from σn−t+1 to σn−t. When increasing Si, 1 ≤ i ≤ n−1
from σn to σn−1 in the first step, the partial derivative of ‖α‖row-1 with respect
to Si is calculated as follows:

∂‖α‖row-1

∂Si
=

n∑
j=1

Ω2
ij√∑n−1

t=1 Ω2
tj + Ω2

nj(S
2
n/S

2
i )

(1.8)

Since Sn ≤ Si, 1 ≤ i ≤ n− 1 and
∑n
t=1 Ω2

tj = 1, we reach the following relation-
ship:

∂‖α‖row-1

∂Si
≥

n∑
j=1

Ω2
ij = 1 =

∂‖A‖∗
∂Si

(1.9)

Thus, ‖α‖row-1 ≥ ‖A‖∗ holds when increasing Si, 1 ≤ i ≤ n− 1 in the first step.
In the same way, we can prove that ‖α‖row-1 ≥ ‖A‖∗ holds in the following n− 2
steps.

3. In sum, ‖α‖row-1 ≥ ‖A‖∗ in the general case where singular values Si are not
identical, i.e., Si = σi,∀i ∈ {1, ..., n}.

According to Proposition 1.1, the minimum of row-1 group sparsity under orthonormal
subspace is the nuclear norm, i.e., ‖α‖row-1 ≥ ‖A‖∗, where A = Dα and DTD = Ik.
Suppose, at weight λ, RPCA recovers the low-rank matrix as its ground truth A∗, i.e.,
Â = A∗, then, ‖α̂‖row-1 +λ‖X− Â‖1 ≥ ‖Â‖∗+λ‖X− Â‖1 ≥ ‖A∗‖∗+λ‖X−A∗‖1 holds for

any (Â, D̂, α̂)Â=D̂α̂,D̂T D̂=Ik
. In sum, at the weight λ, ROSL has the same global minimum

(Â = A∗, D̂ = U, α̂ = SV T ) as RPCA, where A∗ = USV T by SVD.

1.2.3 A General Framework of Robust Low-Rank Recovery Approaches

TABLE 1.1 A general framework of robust low-rank recovery approaches. Given a corrupted

low-rank matrix X = A+ E, A ∈ Rm×n (m > n) and its projected version A′ can be represented

as A = Dα and A′ = D′α′. All approaches follow the same framework; minimizing the sparsity and

rank measures under some constraints, where In and ∆n respectively denote identity and diagonal

matrices.
Approaches RPCA/SLRMD RP-RPCA RMF LMaFit ROSL

Sparsity Measure ‖E‖1 ‖E‖1 ‖E‖1 ‖E‖1 ‖E‖1
Rank Measure ‖α‖row-1 ‖α′‖row-1 ‖D‖2F + ‖α‖2F N/A ‖α‖row-1

Constraints
DTD = In D′TD′ = In N/A N/A DTD = In
αTα = ∆n α′Tα′ = ∆n

To better comparison of our ROSL with other existing approaches, we present a general
framework of robust low-rank recovery approaches, as shown in Table 1.1. All the low-rank
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recovery methods listed in the table utilizes the `1-norm to the sparsity measure and dif-
ferent low-rank measures. RPCA and its variant RP-RPCA use nuclear norm, which is
equivalent to the groups sparsity under orthonormal subspace, with the constraint orthogo-
nal coefficients. RMF uses the Frobenius-norm regularization as low-rank measure. LMaFit
has no low-rank measure. To recover the low-rank structure, our ROSL seeks the groups
sparsity under orthonormal subspace, without the constraint orthogonal coefficients.

ROSL can be considered to be a compromise between RPCA and ordinary matrix fac-
torization methods (e.g. RMF and LMaFit). On one hand, ROSL improves upon RMF and
LMaFit by seeking the group sparsity of A under orthonormal subspace D. This helps it to
recover the low-rank structure of X without requiring accurate rank estimate. On the other
hand, ROSL is a non-convex relaxation of RPCA by replacing nuclear norm ‖A‖∗ with the
group sparsity ‖α‖row-1 under orthonormal subspace. As stated in Lemma 1.2, the nuclear
norm ‖A‖∗ is equal to the group sparsity ‖α‖row-1 under orthonormal subspace D, where
A = Dα, if rows of α are orthogonal. By removing the orthogonality constraint on α, ROSL
can efficiently solve the low-rank recovery problem by sparse coding algorithms without
requiring multiple iterations of SVD. To better comparison of our ROSL with other exist-
ing approaches, we present a general framework of robust low-rank recovery approaches, as
shown in Table 1.1.

1.3 Fast Algorithm for ROSL

In this section an efficient algorithm is presented to solve the ROSL problem in Eq. (1.3).

Algorithm 1 ROSL Solver by inexact ADM/BCD

Require: X ∈ Rm×n, k, λ.
Ensure: D, α, E
1: E0 = Y 0 = zeros(m,n);D0 = zeros(m, k);α0 = rand(k, n);µ0 > 0; ρ > 1; i = 0;
2: while E not converged do
3: for t = 1→ k do
4: Compute the t-th residual: Rit = X − Ei + Y i/µi −

∑
j<tD

i+1
j αi+1

j −
∑
j>tD

i
jα

i
j ;

5: Orthogonalization:
Rit = Rit −

∑t−1
j=1D

i+1
j (Di+1

j )TRit;

6: Update: Di+1
t = Ritα

i
t
T

;
Di+1
t = Di+1

t /(‖Di+1
t ‖2);

7: Update:αi+1
t = S1/µi(Di+1

t

T
Rit);

8: end for
9: Prune: for t = 1→ k, delete (Di+1

t , αi+1
t ) and set k = k − 1, if ‖αi+1

t ‖22 = 0;
10: Update: Ei+1 = Sλ/µi(X −Di+1αi+1 + Y i/µi);
11: Update: Y i+1 = Y i + µi(X −Di+1αi+1 − Ei+1);µi+1 = ρµi; i = i+ 1;
12: end while

1.3.1 Alternating Direction Method

Similar to [LCM10], we apply the augmented Lagrange multiplier (ALM) [Ber82] to remove
the equality constraint X = Dα + E in Eq. (1.3). Its augmented Lagrangian function is
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written as:

L(D,α,E, Y, µ) = ‖α‖row-1 + λ‖E‖1 + Y (X −Dα− E)

+
µ

2
‖X −Dα− E‖2F s.t. DTD = Ik (1.10)

where µ is the over-regularization parameter and Y is the Lagrange multiplier. We solve
the above Lagrange function by inexact alternating direction method (ADM), which iterates
through the following three steps:

1. Solve (Di+1, αi+1) = arg minL(D,α,Ei, Y i, µi).

2. Solve Ei+1 = arg minL(Di+1, αi+1, E, Y i, µi).

3. Update Y i+1 = Y i + µi(X − Di+1αi+1 − Ei+1), µi+1 = ρµi, where ρ > 1 is a
constant.

In the first step, solving D and α simultaneously with constraint Dα+E = X + Y
µ is a

non-convex problem. Fortunately, the sub-problem—updating one matrix when fixing the
other one is convex. This indicates solving D and α using coordinate descent method. In

the second step, we can easily update Ei+1 = Sλ/µi(X −Di+1αi+1 + Y i

µi ), where shrinkage

function Sa(X) = max{abs(X)−a, 0}·sign(X) and ”·” denotes element-wise multiplication.

1.3.2 Block Coordinate Descent

Motivated by group sparse coding [BPSS09], we apply block coordinate descent (BCD) to
solve D and α in the first step of ADM. Suppose the subspace bases D = [D1, ..., Dt, ..., Dk]
and α = [α1; ...;αt; ...;αk], the BCD scheme sequentially updates the pair (Dt, αt), by leav-
ing all the other indices intact. In this way, it allows shrinking the group sparsity ‖α‖row-1

under the orthonormal subspace D, while sequentially updating (Dt, αt). In addition, it
obtains new subspace bases and coefficients that best fit the constraint A = Dα and thus
achieves higher convergence rate, as explained in [AEB06, GL10]. The BCD scheme sequen-
tially updates each pair (Dt, αt), 1 ≤ t ≤ k such that Dtαt is a good rank-1 approximation

to Rit, where the residual is defined as Rit = X + Y i

µi − Ei −
∑
j<tD

i+1
j αi+1

j −
∑
j>tD

i
jα

i
j .

Thus, if removing the orthonormal constraint on D, the pair (Dt, αt) can be efficiently
updated as follows:

Di+1
t = Ritα

iT (1.11)

αi+1
t =

1

‖Di+1
t ‖22

S1/µi(Di+1
t

T
Rit) (1.12)

where Sa(X) is the magnitude shrinkage function defined as Sa(X) = max{‖X‖2 −
a, 0}X/‖X‖2. Due to the space limit, we refer the readers to [BPSS09] for the detailed
induction of Eq. (1.12).

When taking into account the orthonormal subspace, we need to orthonormalize Di+1
t

by the Gram-Schmidt process. As shown in Algorithm 1, the new Di+1
t is obtained via three

steps: (1) project Rit onto the null space of [D1, ..., Dt−1], (2) update Di+1
t as Eq. (1.11)

and (3) then project it onto the unit sphere by normalization.
Above BCD scheme attempts to keep sequentially fitting the rank-1 subspaces

(Di+1
t αi+1

t ) to the objective X + Y i

µi = Di+1αi+1 + Ei, until the fitted subspace is can-

celed by magnitude shrinkage, i.e., ‖αi+1
t ‖2 = 0. To improve the computational efficiency,

we shrink the subspace dimension k by pruning the zero pairs, for they will stay zero in the
next iteration.
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FIGURE 1.2 Decomposition of the low-rank matrix A ∈ Rm×n.

It is possible to run many rounds of BCD to solve Di+1 and αi+1 exactly in the first
step of ADM. In practice, updating (Di+1

t , αi+1
t ), 1 ≤ t ≤ k once at each round of ADM

is shown to be sufficient for the inexact ADM algorithm to converge to a valid solution
(Di+1, αi+1 and Ei+1) to Eq. (1.3).

As shown in Algorithm 1, ROSL can be solved using inexact ADM at the higher scale
and inexact BCD at the lower scale. To the best of our knowledge, there is no established
convergence theory, either for ADM algorithms applied to non-convex problems with more
than two groups of variables [SWZ11], or for BCD algorithms applied to sparse coding
[AEB06, BPSS09]. As all non-convex problems, ROSL has no theoretical guarantee of con-
vergence. However, empirical evidence suggests that ROSL solver has strong convergence
behavior and provides a valid solution: Ai+1 = Di+1αi+1 and Ei+1, when the initialize
E0, Y 0 and D0 as zero matrices, as well as α0 as a random matrix.

1.3.3 Computational Complexity

Compared with RPCA, which has cubic complexity of O(min(m2n,mn2))), ROSL is much
more efficient, when the matrix rank r � min(m,n). Its dominant computational processes
are (1) left multiplying the residual matrix R ∈ Rm×n by D, and (2) right multiplying it by
α. Thus, the complexity of ROSL depends on the subspace dimension k. If we set the initial
value of k as several times larger than r (i.e., r and k are on the same order, being much
smaller than m and n), ROSL has the quadratic complexity of matrix size, i.e., O(mnk) or
O(mnr).

1.4 Acceleration by Random Sampling

Inspired by Nyström method [WS00, KMT09, TR10], we present a random sampling scheme
to further speed up ROSL such that its fast version (ROSL+) has linear complexity with
respect to the matrix size.

1.4.1 Random Sampling in ROSL+

As shown in Fig. 1.2, the low-rank matrix A ∈ Rm×n is first permuted column-wisely
and row-wisely, and then divided into four sub-matrices (ATL ∈ Rh×l, ATR, ABL and
ABR). Accordingly, top sub-matrix AT and left sub-matrix AL are respectively defined as
AT = [ATL, ATR] and AL = [ATL;ABL]. The same permutation and division are done on
X and E. As shown in Fig. 1.2, subspace bases D is divided into DT ∈ Rh×k and DB , as
well as coefficients α is divided into αL ∈ Rk×l and αR, such that

A =

[
ATL ATR
ABL ABR

]
=

[
DT

DB

]
[αL αR] (1.13)
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Nyström method is initially used for large dense matrix approximation [KMT09], and ex-
tended to speed up RPCA in DFC [MTJ11]. Suppose rank(ATL) = rank(A) = r, instead
of recovering the full low-rank matrix A, DFC first recovers its sub-matrices and then ap-
proximates Â as:

Â = ÂL(ÂTL)+ÂT (1.14)

where ”+” denotes pseudo-inverse. However, DFC does not describe how to estimate the
top-left submatrix.

Here, we investigate this specific issue and further simplify Nyström method in the
framework of robust subspace learning. An intuitive solution would be independently re-
covering all three sub-matrices. But this requires exhaustively tuning different parameters
λ, which eventually prevents from achieving high accuracy. The feasible way is that ROSL+
directly recovers the left sub-matrix and the top submatrix, i.e., ÂL = D̂α̂L and ÂT = D̂T α̂,
and then approximates ÂTL by the left sub-matrix of ÂT . Thus, the low-rank matrix A can
be reconstructed as follows:

Â = ÂL((ÂT )L)+ÂT = D̂α̂L((α̂)L)+α̂ (1.15)

where (X)L denotes the left sub-matrix of X. Actually, when rank(ATL) = rank(A) holds,
α̂L recovered from the left observation matrix XL is a good approximation to, or exactly
equal to, (α̂)L recovered from the top observation matrix XT . The same relationship exists

between (D̂)T and D̂T , where (D̂)T denotes the top sub-matrix of D̂. Thus, we can further
simplify ROSL+ as

Â = D̂α̂ (1.16)

where D̂ and α̂ is respectively recovered from XL and XT in the following two simple steps.

1. Solve D̂ and α̂L by applying ROSL on XL:

min
D,αL,EL

‖αL‖row-1 + λ‖EL‖1 s.t.
XL = DαL + EL
DTD = Ik

(1.17)

2. Solve α̂ by minimizing ‖XT − D̂Tα‖1 by fixing D̂T as (D̂)T .

In other words, ROSL+ first recovers D̂ from the left sub-matrix XL (complexity:

O(mlr)), and then solve α̂ by minimizing the `1-norm of XT − D̂Tα (complexity: O(nhr)).
Thus, the complexity of ROSL+ is O(r(ml+nh)). When the matrix rank r is much smaller
that its size, i.e., r � min(m,n), the sample number can be set as l = β2r and h = β3r,
where β2 and β3 are constants larger than 1. In this case, ROSL+ has the linear complexity
of the matrix size, i.e., O(r2(m+ n)).

1.5 Experimental Results

We present several experiments to evaluate the performance of ROSL and ROSL+ including
(1) simulation on a corrupted synthetic low-rank matrix of varying dimension, (2) visual
low-rank recovery on real data for background subtraction. Note that, ROSL algorithm is
implemented in MATLAB without using any advanced tools unlike some other methods
we compare. All the experimental results are executed on an Intel W3530 CPU and 6GB
memory. For simplicity, we set the sample number h = l for ROSL+ and other sampling-
based methods we tested.

Similar to [MDYY11], a square low-rank matrix A ∈ Rm×m is synthesized as a product
of a m × r matrix and a r ×m matrix (r is set to be 10), whose entries obey the normal
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TABLE 1.2 Evaluation of ROSL, ROSL+ and the existing low-rank recovery approaches on

synthetic m×m low-rank matrices with rank r = 10.
m=500 m=1000 m=2000 m=4000 m=8000 iter

MAE Time MAE Time MAE Time MAE Time MAE Time

RPCA 2.8E-6 2.51 1.0E-6 12.7 5.7E-7 112 1.2E-6 981 N/A N/A 18∼20
Partial RPCA 2.2E-6 1.44 1.1E-6 5.6 7.6E-7 24.4 5.3E-7 161 6.7E-7 802 18∼20
RP-RPCA 3.0E-2 5.9 3.7E-1 23.7 4.2E-1 110 7.7E-1 669 1.6E+0 3951 300
LMaFit 5.3E-1 6.9 3.8E-1 28.7 1.8E-1 116 3.4E-2 442 5.0E-3 1750 300
ROSL 6.3E-6 0.78 6.1E-6 2.83 2.2E-6 12.8 9.8E-6 41.8 2.2E-6 214 16∼17
ROSL-Nys1 2.4E-0 0.42 2.6E-0 0.89 2.3E-0 1.56 3.0E-0 3.78 2.8E-0 9.0 18∼20
ROSL-Nys2 4.8E-5 0.42 5.4E-5 0.89 5.0E-5 1.56 4.3E-5 3.77 4.6E-5 8.9 18∼20
ROSL+ 2.9E-5 0.31 3.1E-5 0.65 3.3E-5 1.1 2.7E-5 2.5 2.2E-5 5.6 18∼20

The Mean of Absolute Error (MAE) between A and Â is used to gauge the recovery accuracy. The
iterations (rounds of ADM) and the total running time (seconds) are reported. Note: aEb denotes
a × 10b. Parameters are set up as: (1) λ is best tuned for each method. (2) The dimension of D
is initialized as k = 30. (3) The stop criterion is ‖X − Ai+1 − Ei+1‖F /‖X‖F ≤ 10−6. (4) The
maximum iteration number (iter) is set to be 300. (5) The sample number l = h = 100.

distribution. Then, the corrupted data X is generated by the addition of A and a sparse
matrix E ∈ Rm×m (10% of its entries are non-zero and drawn from the uniform distribution
on [-50, 50]).

On this synthetic data, we evaluate the recovery accuracy and efficiency of ROSL, com-
pared with RPCA, RP-RPCA and LMaFit (advanced version of RMF). As shown in Ta-
ble 1.2, ROSL is much faster than these methods without compromising the recovery accu-
racy. The original RPCA using full SVD is computationally costly and is almost infeasible
when the matrix size m = 8000. Even partial RPCA [LCM10] is consistently 4 times slower
than ROSL and also requires a proper way to update κ. Although random projection helps
reduce the computation of a single SVD, many iterations of SVD are needed to be con-
ducted on different projected matrices. Thus, the total computation of RP-RPCA is costly
and its recovery accuracy is low (Table 1.2). In the ideal case that the matrix rank is known,
LMaFit has the same accuracy and complexity as ROSL. However, since it is unable to min-
imize the matrix rank, it fails to obtain accurate low-rank matrix recovery without exactly
setting k = r. On this synthetic data (rank r = 10) in Table 1.2, LMaFit converges very
slowly and fails to obtain accurate recovery at k = 30, which is true even at k = 14.

To evaluate the performance of ROSL+, we apply the generalized Nyström method
(employed in DFC) to ROSL, called ROSL-Nys. Since the performance of ROSL-Nys highly
depends on how to recover ATL, we present two different variants of ROSL-Nys, i.e., ROSL-
Nys1 recovering sub-matrices (ATL, AT and AL) independently, and ROSL-Nys2 recovering
ATL by left sub-matrix of AT . Actually, DFC also employed another column sampling
method. But it requires recovering multiple (i.e., nl ) sub-matrices (size:m× l) and thus has
quadratic complexity, much slower than ROSL+ (linear complexity). As shown in Table 1.2,
RPCA-Nys1 fails to obtain accurate recovery. The reason is that tuning a common weight λ
cannot guarantee the optimality of three subproblems—estimating AL, AT and ATL. Both
the computational complexity and recovery accuracy of ROSL+ are on the same order of
that of ROSL-Nys2, and are slightly (1.5 ∼ 2 times) better that the latter. This better
performance is due to that ROSL+ consists of only one time ROSL and one time linear
regression.

In addition, we evaluate the stability and convergence rate of ROSL/ROSL+ on the
same synthetic matrix by varying the initial rank k, weight λ or submatrix size l. Firstly,
we observed that the recovery accuracy and convergence rate of ROSL are not sensitive to
selection of k, as long as k > r. As shown in Fig. 1.3, ∀k ∈ [20, 100], the subspace dimension
recovered by ROSL at λ = 0.03 fast converges to the rank r = 10 and the high accuracy
(MAE ≈ 10−6) is achieved. Secondly, ROSL produces accurate low-rank recovery at any
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FIGURE 1.3 Convergence rate of ROSL. At the fixed λ = 0.03, the recovered subspace dimension

always converges to r = 10 in less than 7 iterations regardless of the initial value of k, which indicates

the ROSL solver is robust and very stable. The recovered subspace dimension increases as λ increases from

0.03 to 0.05. MAE ≈ 10−6 at all cases above.

FIGURE 1.4 Recovery accuracy (MAE) of ROSL+ on synthetic data (m = 1000, r = 10, k = 30).

For each l, the recovery errors (MAE) of ROSL+ in 10 different random-sampling trials are shown in green

(their median in red). The recovery error (MAE) of ROSL+ decreases exponentially with the increase of l.
These tests also indicate that ROSL+ gets the same global solution as RPCA in almost all cases.

weight λ ∈ [0.03, 0.05] and the recovered subspace dimension consistently increases with λ.
ROSL recovers the 14-dimension orthonormal subspace when λ = 0.05 and obtains accurate
recovery (MAE≈ 10−6). Thirdly, at the fixed sub-matrix size l, the recovery accuracy of
ROSL+ is relatively stable in different random sampling trials. As the submatrix size l
increases, the recovery error (MAE) of ROSL+ decreases exponentially and reaches as low
as 3× 10−5 when l = 10r = 100 (Fig. 1.4). This result is in line with the failure probability
δ of rank(ATL)=rank(A) that exponentially decreases with the increase of l.

To compare the recovery accuracy of ROSL/ROSL+ with that of RPCA, we evaluate
them on two standard visual data sets, Yale-B face images and the lobby background sub-
traction video, similar to [CLMW11]. From each video, we build an observation matrix X
by vectorizing each frame as one column, and respectively recover the low-rank component
A from X by ROSL and RPCA.

In the lobby video, both ROSL and ROSL+ exactly recover the same (accurate) fore-
ground objects and background components as RPCA at much faster speeds (ROSL: 10×,
ROSL+: 92×) as shown in Fig. 1.5.

In the face image experiments, the non-diffusive component E detected by ROSL is
almost the same as that by RPCA (Fig. 1.6). The results of ROSL+ are very close to those
of ROSL and thus not included in Fig. 1.6, due to the space limit. Note that, the lobby
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(a) (b) (c) (d) (e) (f) (g)

FIGURE 1.5 Comparison of RPCA, ROSL(k = 10) and ROSL+(l = 50) in background modeling

on the lobby video (size: 160 × 128, 1060 frames). (a) Original images. Backgrounds recovered by (b)

RPCA, (d) ROSL, and (f) ROSL+. Foregrounds recovered by (c) RPCA, (e) ROSL, and (g) ROSL+.

ROSL (time: 34.6s) and ROSL+ (time: 3.61s) are significantly (10×, 92×) faster than RPCA (time: 334s)

while generating almost identical results.

video is a thin matrix (20480× 1060) and the efficiency improvement of ROSL/ROSL+ is
expected to be even higher for large-scale square matrices. Such matrices are common in
typical applications, e.g., in video summarization (105 images of 106 pixels) and in face
recognition (106 images of 106 pixels).

1.6 Conclusion

A Robust Orthonormal Subspace Learning (ROSL) approach is presented for efficient robust
low-rank recovery. This approach accelerates the state-of-the-art method, i.e., RPCA, by
replacing the nuclear norm on the low-rank matrix by a light-weight measure—the group
sparsity of its coefficients under orthonormal subspace. This enables using fast sparse coding
algorithms to solve the robust low-rank recovery problem at the quadratic complexity of
matrix size. This novel rank measure is proven to be lower-bounded by the nuclear norm
and thus ROSL has the same global optima as RPCA. In addition, a random sampling
algorithm is introduced to further speed up ROSL such that ROSL+ has linear complexity
of the matrix size. Experimental results on the synthetic and real data show that ROSL
and ROSL+ achieve the state-of-the-art efficiency at the same level of recovery accuracy.
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